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Abstract. Blockchain security is becoming increasingly relevant in today's  

cyberspace as it extends its influence in many industries. This paper focuses on 

protecting the lowest level layer in the blockchain, particularly the P2P network 

that allows the nodes to communicate and share information. The P2P network 

layer may be vulnerable to several families of attacks, such as Distributed Denial 

of Service (DDoS), eclipse attacks, or Sybil attacks. This layer is prone to threats 

inherited from traditional P2P networks, and it must be analyzed and understood 

by collecting data and extracting insights from the network behavior to reduce 

those risks. We introduce Tikuna, an open-source tool for monitoring and 

detecting potential attacks on the Ethereum blockchain P2P network, at an early 

stage. Tikuna employs an unsupervised Long Short-Term Memory (LSTM) 

method based on Recurrent Neural Network (RNN) to detect attacks and alert 

users. Empirical results indicate that the proposed approach significantly 

improves detection performance, with the ability to detect and classify attacks, 

including eclipse attacks, Covert Flash attacks, and others that target the 

Ethereum blockchain P2P network layer, with high accuracy. Our research 

findings demonstrate that Tikuna is a valuable security tool for assisting operators 

to efficiently monitor and safeguard the status of Ethereum validators and the 

wider P2P network. 

Keywords: Ethereum blockchain, security, P2P network, deep learning, anomaly 

detection, vulnerabilities, eclipse attacks. 

1 Introduction 

Ethereum was formally introduced by Vitalik Buterin in his whitepaper in 2014 [3] and 

launched in 2015 as a public cryptocurrency blockchain platform that supports smart 

contract functionality with Ether (ETH or 𝛯) as its native cryptocurrency and Solidity 

as its programming language [37]; it is the second largest cryptocurrency after Bitcoin, 

with around $200 billion as of March 2023 [7, 41]. 
Even though blockchain technology is highly secure and decentralized, it still offers 

attack opportunities. For example, in blockchain networks, there are cases, such as the 

ones mentioned in [26, 8, 20], in which the dApps, average users, or the network itself 
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are exposed to risks due to particular vulnerabilities [4, 43, 21, 40, 8, 42, 24, 26, 20]. 

Therefore, understanding the risks associated with blockchain networks and effectively 

developing security-focused solutions is essential to any blockchain. 

Peer-to-peer (P2P) networks are decentralized networks that include many nodes 

storing and distributing data collectively, and each node operates as an individual peer. 

The communication is carried out without a central authority; hence, all nodes obtain 

the same amount of power and are responsible for the same activities. The P2P network 

is one of the fundamental components of the blockchains that enable the creation and 

operation of cryptocurrencies [28].  
In the blockchain, the P2P network enables nodes (clients) to exchange data, for 

instance, transactions and blocks. In general, there is an economic incentive for 

participants to behave honestly. Given their public and distributed nature, blockchain 

components are especially exposed to attackers who can easily reach and interact with 

the different layers. Such adversaries may use a malicious node, tool, or software to 

take advantage of specific weaknesses in the P2P network layer and launch several 

attacks on the blockchain, like the ones described in [26, 43, 20]. The security of the 

entire blockchain relies on the reliability of its P2P network. 

The Ethereum P2P protocol [36] was influenced by the kademlia Distributed Hash 

Table (DHT) design. Although kademlia possesses valuable properties, it has several 

limitations in terms of its security [4, 22]. There are several known attacks for such a 

protocol, including the eclipse attacks [20, 43], where it is possible to perform 

manipulations against the Ethereum P2P network participants, and deanonymization 

attacks, as presented in [14]. Other types of vulnerabilities are also present (s. Section 

3.2). Nevertheless, employing multiple detection and mitigation approaches [10, 11] 

can significantly reduce or eliminate the severity of these risks. 
This research paper introduces the following three main contributions: 

● A Machine Learning (ML) approach that can detect several attacks at the 

Ethereum P2P layer using peer message trace data in a testing simulation 

environment using the libp2p testground framework; 

● The detection of eclipse attacks on the mainnet is demonstrated by extracting 

custom-generated discovery connection log data from the Ethereum client 

Prysm and utilizing the LSTM neural network; 

● A custom exploit of an eclipse attack was developed and tested against a 

modified Prysm client on the mainnet. The peer table buckets could be 

fulfilled by a single attacking machine, overcoming the limitation of a single 

peer per IP address by using virtual addresses and Docker containers. With 

this exploit, the effectiveness of the Tikuna approach can be tested. 
Moreover, as a contribution to the Ethereum and blockchain security research 

communities, we have made the Tikuna code publicly available as an open-source 

resource at our GitHub repository [38]. 

This paper is organized as follows: Section 2 provides an overview of alternative 

and related approaches. Next, in Section 3, the various types of blockchain P2P network 

attacks are discussed, and the Tikuna approach, consisting of three primary steps, is 

introduced. The efficacy of the Tikuna approach is evaluated in Section 4, utilizing a 

simulation and mainnet connection dataset. Finally, Section 5 concludes the paper by 

summarizing the proposed work, drawing conclusions, and identifying potential future 

research directions. 
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2 Related Work 

Researchers have recently started focusing on the solution to address the different attack 

vectors on the Ethereum platform and the P2P network security vulnerabilities. The 

following are some of the most recent works that address the security challenges of the 

Ethereum blockchain P2P networks: 

Kabla et al. [21] focus on the security issues of each layer in the Ethereum 

blockchain, such as the network layer, by providing an in-depth analysis covering the 

following three areas: 

● Its potential attacks include eclipse attacks and account hijacking attacks. 

● The vulnerabilities that lead to them are unlimited node creation and 

uncapped incoming connections. 

● Each incident's consequences include double spending or a denial of service. 

Furthermore, the work presents an overview of the effectiveness and limitations of 

the current Intrusion Detection Systems (IDS) as a defense technique against various 

Ethereum-based attacks. 

Vyzovitis et al. [40] propose two different hardening measures for the GossipSub 

protocol, the mesh construction and the score function. The authors describe some of 

the countermeasures featured in the GossipSub protocol. However, the proposed 

methods use fixed rules that should be manually parametrized, which has limited their 

widespread usage in the different Ethereum clients. We suggest the use of machine 

learning to select parameters for the detection of attacks automatically. 

The report from Least Authority [23] details the results of a security audit they 

conducted on the next-generation node discovery protocol of the Ethereum P2P 

network stack. It also reveals areas for improvement in the DevP2P specification, 

particularly the lack of a proof-of-X scheme for identity generation, disjoint paths in 

the lookup operation, and broken handshake authentication. Finally, the report indicates 

that launching eclipse attacks against the Ethereum clients using the current peer 

discovery specification is trivial. 

Marcus et al. [24] highlight the possibility of eclipse attacks on Ethereum nodes, 

which could be carried out using only two hosts and could result in the victim's view of 

the blockchain being filtered or their computing power being co-opted. The authors' 

contributions include a detailed explanation of the network and its relationship with the 

kademlia protocol, two off-path eclipse attacks, and one involving time manipulation. 

Furthermore, they have proposed countermeasures to prevent these attacks, such as 

using a combination of IP address and public key for node identification and making 

design decisions to harden Ethereum. Some of these countermeasures have been 

implemented in Geth v1.8. Those measures restrict the number of peers connecting to 

a victim from the same IP. We show that it is still possible to fulfill buckets from the 

peer table from a single attacking server with a unique public IP address. 

Xu et al. [43] discuss the eclipse attacks on the Ethereum P2P Network. The authors 

developed an ETH-EDS eclipse-attack detection model targeting the Ethereum  

platform. This model used a random forest classification technique to examine the  

network's regular and attack data packets. The collected data packets included details 

like the size of the tag packets, the frequency with which they were accessed, and the 
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access time. The findings of the experiments show that malicious network nodes could 

be identified with a high degree of precision. We further propose using deep learning 

techniques to automatically select features in the data and improve detection accuracy. 

We use this research to compare our results. The details of our approach are discussed 

in the following sections. 

3 Tikuna Approach 

3.1 Tikuna Terminology 

Tikuna is a proof-of-concept peer-to-peer network security monitoring system  

developed initially for the Ethereum blockchain. It uses deep learning to extract security 

and performance insights for the early detection of incidents. Our goal with Tikuna is 

to support the Ethereum community by providing a cutting-edge open-source tool  

capable of collecting security-related data from the state of the P2P network and  

improving network visibility by providing insights about the network's current state. 

The Ethereum peer-to-peer (P2P) discovery protocol [36] enables nodes on the  

network to locate and connect with other peers. With this protocol, nodes on the 

Ethereum network can share information about transactions, blocks, and other network 

events. The DevP2P architecture includes the discovery protocol as an essential  

component of the communication system among Ethereum nodes.  

Ethereum uses a discovery algorithm similar to Kademlia [25], a Distributed Hash 

Table (DHT) communication protocol used before for other technologies such as  

torrents. This protocol enables peers to identify and interact with each other in a  

decentralized network without having to rely on a central server. Every node in the 

network is responsible for its routing table, organized in the form of a binary tree with 

the node's ID at the tree's root. Other peers are listed as leaf nodes. An existing peer can 

assist a new peer in joining the network by checking its routing table to locate the node  

relatively closest to the new peer's ID. This is accomplished by utilizing a distance 

metric based on the peer IDs' XOR operation. This process of gathering information 

about other peers in the network is repeated iteratively until the new peer has collected 

data on a significant number of peers in the network. The distance metric is the reason 

for both the effectiveness and the scalability of kademlia's routing tables, even when  

applied to extremely large networks. 

The unsupervised anomaly detection method selected for this work is the long  

shor-term memory. These algorithms are commonly used for analyzing time series data 

and natural language processing. Below is a brief introduction to these neural network 

algorithms. 

Recurrent Neural Network. Recurrent neural networks [26] are frequently utilized for 

processing sequential data, such as time series. RNN is specialized for processing a 

sequence of values that are a function of time. We can define a data sequence as follows: 

 

                                             𝑥(1), … , 𝑥(𝑇)                                (1) 
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, where T is the number of available data samples. RNN can scale to long sequences 

that would not be practical for networks without sequence-based specialization. Most 

recurrent networks can also process sequences of variable length. One of these models 

is especially interesting for this research. The long short-term memory model [5, 29, 

34, 26, 1] uses a gating mechanism to propagate information through many time steps 

properly. LSTM networks have a specific memory cell and can capture long-term  

dependencies in sequential data. They are valuable tools for language modeling  

problems. These models are a version of recurrent neural networks useful for long  

interrelated sequences of data [5, 29, 34, 26, 1]. LSTM was chosen in this research for  

anomaly detection to find malicious connections to an Ethereum client. They can be 

defined with the following set of equations: 

 

𝑓
𝑡
=  𝜎𝑔(𝑊𝑓𝑥⃗𝑡  +  𝑈𝑓ℎ⃗⃗𝑡−1  + 𝑏⃗⃗𝑓 )                            (2) 

 

𝑖𝑡=  𝜎𝑔(𝑊𝑖𝑥⃗𝑡  + 𝑈𝑖 ℎ⃗⃗𝑡−1  + 𝑏⃗⃗𝑖  )                            (3) 

 

𝑜⃗𝑡=  𝜎𝑔(𝑊𝑜𝑥⃗𝑡  + 𝑈𝑜 ℎ⃗⃗𝑡−1  + 𝑏⃗⃗𝑜 )                            (4) 

 

𝑐𝑡= 𝑓
𝑡

° 𝑐𝑡−1+ 𝑖𝑡 ° 𝜎𝑐 (𝑊𝑐𝑥⃗𝑡 + 𝑈𝑐ℎ⃗⃗𝑡−1 + 𝑏⃗⃗𝑐  )         (5) 

 

ℎ⃗⃗𝑡= 𝑜𝑡 ° 𝜎ℎ (𝑐𝑡)                               (6) 

 

Similarly to the common RNN, 𝑥⃗𝑡 is the input vector at a given iteration 𝑡, ℎ⃗⃗𝑡 is an 

output vector of the hidden layer, and 𝑐𝑡  is a cell state. In this case, 𝑊  and 𝑈 are 

parameter matrices, and 𝑏⃗⃗ are bias vectors. 𝑓
𝑡
 is a forget gate vector, 𝑖𝑡 is the input gate 

vector and 𝑜⃗𝑡  is the output gate vector. The operator ° is the entrywise product of 

matrices.  
In the next section, some attacks that can be detected using the described 

unsupervised anomaly detection model are explained in detail. 

3.2 Types of P2P network attacks 

Adversaries can exploit some vulnerabilities in the blockchain's P2P networks to  

perform a variety of attacks [4, 43, 21, 40, 8, 42, 24, 26, 20], including the following: 

 

(1) Eclipse Attack [42, 24, 20]. An eclipse attack is an attack that can be carried out 

against a single victim node or the whole network, where the adversary isolates 

the victim node within the P2P network by gaining complete control of the node's 

access to information or control over everything that the node sees. 

(2) Censorship Attack [40]. During this type of attack, the adversaries will use the 

nodes on the network that they have created with fake identities (i.e., Sybil nodes) 

to propagate all messages, except for those the peer published that they are trying 
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to attack. In addition, the primary objective of the attacker is to censor the target 

and stop its messages from being transmitted to the rest of the network.  

(3) Sybil Attack [12, 2]. Which is also known as pseudo-spoofing, is an attack that 

can target any P2P network, such as blockchain networks, in which a single 

adversary creates a large number of nodes on the network with fake identities to 

gain a more significant presence in the network and eventually take control of the 

network. This attack might also be used to carry out other types, such as an eclipse 

or censorship attack.    

(4) Cold Boot Attack [40]. In this type of attack, honest nodes and nodes with fake 

identities (so-called Sybil nodes) join the network simultaneously; genuine peers 

attempt to build their network while connecting to both Sybil and genuine peers. 

Since there is no information about honest nodes to secure the network, the Sybils 

can seize control. There are two possible scenarios for the attack: (1) when the 

network bootstraps with Sybils joining from the start or (2) when new nodes join 

the network when it is under attack. 

(5) Flash and Covert Flash Attack [40]. Sybils will simultaneously connect and 

launch attacks against the targeted network in a Flash attack. On the other hand, in 

the Covert Flash Attack, Sybils join the network and act normally for some time to 

build up their score. Then, they carry out a coordinated attack in which they stop 

propagating messages altogether to disrupt the network entirely. Furthermore, as 

the adversaries act appropriately up until that point and establish a valid profile, it 

is difficult to identify the attack. 

Our goal with Tikuna is to identify the described attacks using the anomaly detection 

approach, that is, by finding peer connections to a victim that deviates from the 

expected behavior of honest peers. We describe in detail the different components of 
Tikuna, starting with the data collection and concluding with the anomaly detection 

module. 

3.3 Tikuna Methodology 

Fig. 1 shows the methodology of Tikuna, which comprises three main steps: (1) data 

extraction from a simulation environment using the testground [35] framework and the 

Ethereum mainnet; (2) training and classification analysis; and (3) P2P security incident 

detection. The following subsections provide a detailed explanation of these steps. 

 

Step 1: Data extraction from testground simulation and Ethereum 2.0 mainnet. 

Data extraction refers to extracting data from a simulation or mainnet environment. It 

may include patterns that are challenging to identify without suitable analysis and 

converting it into a format ideal for the training part, i.e., for training our LSTM model. 

However, before this step, the dataset must be preprocessed to extract the pertinent 

features and convert the data into a format the AI model can interpret. 
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Fig. 1. Overview of the proposed Tikuna Architecture. 

Every second, the measurement system gathers a sequence of monitoring data from 

the participating peers in the network. The extracted data is parsed into structured data 

represented by vectors of integers that are later normalized by applying the 

MinMaxScaler method from Sklearn. The used data includes timestamps and gossip 

message event traces. The data extraction process in LSTM [5, 29, 34, 26, 1] involves 

four main steps: (1) the data cleaning step filters out any data from the simulation 

dataset considered irrelevant or corrupt; (2) the feature extraction step involves 

identifying and extracting the relevant features from the dataset, which will be used to 

train the LSTM model; (3) The data normalization step scales the extracted features to 

a standard range, ensuring that the LSTM model can handle them most effectively, and 

(4) in the sequence formation step, the extracted and normalized features are grouped 

into a time-series sequence that can be utilized to train the LSTM model. 

Step 2: Training and classification analysis. The model is fed with input sequences 

and output labels corresponding to only normal data in the training phase. The model's 

weights and biases are then iteratively updated to reduce the difference between its 

predictions and the actual outputs. This enables the model to understand the underlying 

relationships in the data. In the evaluation part, on the other hand, the trained LSTM 

model is utilized to predict new, unseen input sequences. The model receives a 

sequence of input data and generates an output prediction based on the learning patterns 

during the training process. This prediction may then be compared to the actual label 

to determine the model's accuracy. As illustrated in Fig. 2, the training data for Tikuna 

AI are the output data from the preprocessing stage for regular peer communication 
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within the network. In addition, Tikuna uses this data to train the model and extract 

features that the artificial neural network in the subsequent stage will utilize. 

Step 3: Detection of P2P-relevant security incidents. In this step, detecting security 

incidents related to the P2P network involves identifying and recognizing connection 

patterns that characterize the threats described in Section 3.2. The goal is to quickly 

identify and respond to such incidents, minimize damage, and maintain network 

infrastructure security. As shown in Fig. 2, an LSTM method [5, 29, 34, 26, 1] is used 

by Tikuna. Such a model is based on a recurrent neural network, and it can remember 

long-term dependencies over the input data (i.e., a series of connection monitoring 

data). In addition, a forecasting loss function is used to evaluate how well the neural 

network models the training data by comparing the target and predicting output values 

to minimize this function (i.e., to train the model to detect anomalies based on previous 

observations under the assumption that honest peers monitoring data follow a consistent 

pattern). Consequently, Tikuna detects P2P-relevant security incidents when the peers' 

connection data deviates from typical behavior.  

Finally, Fig. 2 displays the essential steps of the process flow of Tikuna that ensure the 

model is thoroughly trained and capable of precisely detecting data anomalies. 

 

Fig. 2. Tikuna AI Flow Diagram 
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4 Evaluation 

4.1 Experiment Design 

Experiments were conducted in two distinct network environments: one using the 

Protocol Labs simulation tool testground [35] and the other using the Ethereum mainnet 

to evaluate the effectiveness and performance of the Tikuna approach thoroughly. In 

this research, we utilized simulations to demonstrate that Tikuna is a practical approach 

to detecting Ethereum blockchain P2P network attacks. 

For all the experiments performed, we have used a set of five dedicated root Hetzner 

servers in different locations worldwide. They all had 64 GB of DDR4 RAM, two 

512GB NVMe SSDs, and an AMD Ryzen CPU as hardware characteristics.  

As mentioned before, we have only used the Ethereum mainnet client Prysm [31] 

because it is the most popular node software at the time of writing. In future research, 

we plan to explore other prevalent clients. 

4.2 Attack Simulation Setup 

Since we have two different environments for testing and the mainnet, we have used 

various strategies to simulate the attacks we wanted to detect. The reason for using two 

different settings is that the attacks are less complex and less harmful to evaluate first 

in an isolated yet realistic testing environment. In the testing environment, we used this 

repository [18], created from a research project by Protocol Labs aimed to recreate 

several attacks on the libp2p (go-lang) library version, which is the one used by 

Ethereum (Prysm), Filecoin, and IPFS. All the attacks described in Section 3.2 are 

executed in such a simulation environment. We have forked the gossipsub-hardening 

repository [19] and modified it to store the peer message traces in a file. A considerable 

amount of traces are produced during the simulation of the attacks; hence, we have 

grouped the traces between the 12 types [17] of gossip-sub events and the number of 

events seen every 300 milliseconds. In Fig. 3, we show samples of the kind of data 

used.  

For the mainnet scenario, we have developed our own eclipse attack code to test the 

effectiveness of our detection approach in a production environment. The exploit is 

based on the work in [9] using the Rust programming language. It uses the testground 

framework to run a series of Ethereum nodes that create fake node IDs specially crafted 

to be located in specific buckets of a victim's Ethereum client peer table. We have not 

simulated the other attacks in the mainnet network because they are considerably more 

complex to deploy than the eclipse attack. However, this attack shows the effectiveness 

of Tikuna under real conditions. 

4.3 Deep Learning Algorithm Setup 

With the developed exploit code [33], we could simulate a realistic eclipse attack 

scenario against a modified Prysm client (using the Geth discovery library). We have 

changed the code of both projects so the victim node will not advertise the simulated 
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fake peer IDs to other honest peers in the network. We also added new logging features 

to collect the UDP discovery connections and the gossip-sub message traces received 

and sent by the victim client. The code forks are in the following repositories [32, 15]. 

Fig. 4  shows a sample of the collected UDP discovery connection data from the honest 

and attacking peers. The data was collected from the debugging logs of a single victim 

Ethereum node. Each line has several input features, including a timestamp, IP, and 

port removed from the peer table, IP and port added to the peer table, and bucket where 

the peer is added. 

 

 

Fig. 3. Example data extracted from testground simulations. 

Forecasting loss was utilized to model the sequences of peer traces and connection 

log data and predict the subsequent observed event using the previous observations. By 

learning event patterns from regular series, we could automatically detect anomalies 

when the event pattern deviates from the ordinary operation [5]. We divide the data into 

fixed-length sequences to give the machine learning algorithm its inputs. Each input 

sequence should correspond to a single output label, in our case, the following token in 

the sequence. Then we needed to transform input sequences into tensors.  

The tensors should have the shape (batch_size, time_steps, input_features), where 

batch_size represents the number of input sequences in a single batch, time_steps 

represents the length of each input sequence, and input_features represents the number 

of features in each input data point. 

 

 

Fig. 4. Sample of normal and eclipse attack mainnet data 
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Formally, for an event 𝑒𝑖  at time step 𝑡 , an input window W is created, which 

contains 𝑚 connection events preceding 𝑒𝑖 , i.e., 𝑊 = [𝑒𝑡−𝑚, … , 𝑒𝑡−2, 𝑒𝑡−1]. This is 

achieved by splitting event sequences into subsequences. Window size and step size 

are the parameters that control the division process.  

The model is then trained to learn a conditional probability distribution 𝑃 (𝑒𝑡  =
 𝑒𝑖  |𝑊) for all 𝑒𝑖 in the set of distinct log events 𝐸 =  {𝑒1, 𝑒2, . . . , 𝑒𝑛 }. In the detection 

phase, the trained model predicts a new input window, which will be compared against 

the actual event. An anomaly is seen if the ground truth is not one of the most 𝑘 

probable events predicted by the model. 

Given the numerical labels, the trace data collected in the testground simulation 

attacks required a mean squared error (squared 𝐿2 norm) loss function. On the other 

hand, the discovery connection data collected from the mainnet attacks required a cross-

entropy loss function because of the categorical labels (the most probable following 

tokens).  

 
Table 1. Parameters selected for the LSTM model. 

Parameters/ 

Data type 

Testground trace  

data 

Mainnet discovery  

connection data 

hidden_size 20 128 

num_layers 2 2 

num_directions 2 2 

embedding_dim 5 10 

epochs 100 100 

batch_size 1000 1024 

learning_rate 0.01 0.01 

topk - 5 

patience 5 30 

ranxdom_seed 50 42 

 

Table 1 summarizes the various parameters that may be adjusted in the LSTM model 

for the specific type of data modeled. The hidden_size, num_layers, num_directions, 

and the embedding_dim were all fixed, and the suggested model defined the values for 

each parameter. The parameters max_token_len, min_token_count, epochs, batch_size, 

learning_rate, topk, patience, and random_seed had their values predetermined, and the 

relevant experimental experience was used to identify their appropriate ranges. 

4.4 Experiment Results 

Regarding the eclipse attack on a mainnet client, it was possible to overcome the Prysm 

restriction by adding many nodes from the same public IP address into the same peer 

table bucket. We used the ECDSA signatures using the secp256k1 curve to generate 

fake peer IDs and craft many Ethereum Node Records (ENR) for nodes that 

communicated with the victim's Prysm client. The exploit code will be published once 

it is reviewed by the Ethereum Foundation to confirm whether a fix is needed. We 

include in this paper the ML detection results for three different attacks in the 
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testground simulation environment: (1) multiple Sybil nodes launching eclipse attacks 

against a single node; (2) various nodes trying covert attacks against several honest 

peers; and (3) several attackers trying to eclipse an entire peer network. For the mainnet 

environment, we show the detection results for multiple nodes trying to eclipse a single 

victim node, and we compare the results with a previous approach using random forest 

classification over network packets [29]. Refer to Section 3.2 for an explanation of such 

attacks. 

The results include standard measures like precision, recall, F1 score, and accuracy, 

using the equations listed in Table 2 to evaluate the models with the different data types. 

 

Table 2. Standard measures equations used to evaluate the models 

Equation 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗  𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗  𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 +  𝑟𝑒𝑐𝑎𝑙𝑙
 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =   
𝑇𝑃 +  𝑇𝑁

𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁
 

 

Table 3 presents the results of applying our Tikuna anomaly detection approach for 

detecting attacks in simulated testground runs, including the described metrics, the 

number of attackers, and the number of victims. 

The results were collected after several LSTM iterations with training and evaluation 

data. As can be seen in Table 3, the best results were obtained for the multiple attacker 

single victim scenario, with metrics close to 100% of performance. For the other two 

scenarios, the metrics indicate a lesser optimal performance, especially in recall and 

accuracy metrics, but still, our approach shows good detection ability. 

 
Table 3. Summary of Tikuna results using the simulation test data 

Attack / Metric Attackers Victims Precision Recall F1 score Accuracy 

Eclipse  

Single Victim 

100 1 1.00 0.99 0.99 0.99 

Covert Attack 100 20 1.00 0.80 0.89 0.80 

Eclipse 

Network 

200 50 1.00 0.79 0.88 0.79 
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Table 4 presents the results of applying our Tikuna approach to the Ethereum 

mainnet discovery connection data, including precision, recall, F1 score, and accuracy. 

For completeness, we have also included the results we obtained using the popular 

transformer deep learning architecture [39]. Four Hetzner servers were used for creating 

attacking Ethereum nodes, and one was used as a victim node. Except for recall, the 

Tikuna LSTM anomaly detection approach presented better results than the comparable 

work in [43], using Random Forest Classification (RFC) over network packets in all 

the metrics, especially the F1 metric that represents a better balance among true and 

false positives. The recall measure was the only metric where the RFC work performed 

better. The transformer model performed similarly to the RFC technique, indicating 

that it did not outperform the LSTM model. This result is surprising given transformers' 

success in natural language processing. 

Table 4. Summary of Tikuna results using the Ethereum mainnet 

Approach / Metric Precision Recall F1 score Accuracy 

Tikuna 0.81 0.88 0.85 0.87 

RFC 0.71 0.95 0.62 - 

Transformer 0.74 0.99 0.6 0.6 

 

If we compare the results from the testground environment to the mainnet one, more 

optimal results were obtained for the simulation case with connection trace data. 

However, that same approach did not work for mainnet detection. Furthermore, the 

selected discovery connection log data model performed well, making it appropriate 

for usage in Ethereum blockchain validators.  

Furthermore, we conducted experiments to assess the processing time of Tikuna for 

evaluating new data. On the hardware setup described, our approach demonstrated an 

average processing time of 3 milliseconds to analyze 20 consensus client log lines. This 

finding highlights the suitability of our approach for real-time attack detection. 

5 Conclusion and Future Work 

This paper presents Tikuna, an Ethereum blockchain network security monitoring and 

anomaly detection system, using a long short-term memory-based neural network 

model. We introduced three main contributions: our method can detect several attacks 

at the P2P layer using peer message trace data in a testing simulation environment using 

the testground tool. We demonstrate the detection of eclipse attacks on the Ethereum 

mainnet by extracting discovery connection log data from the Prysm client. In addition, 

a custom exploit implementing an eclipse attack was developed and tested against a 

modified Prysm client on the mainnet. 
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Tikuna learns and encodes the expected behavior and the interaction between peers 

within the network, including timestamps, gossip-sub connection features, and 

discovery connection log data. It tries to classify this data as normal or malicious based 

on several attack patterns, such as eclipse and Covert attacks. Moreover, we presented 

the results of applying our approach to the Ethereum P2P network. We still need to 

work on reducing the number of false positives in the detection task, a classical problem 

faced by ML-based intrusion detection systems. 

In future work, our team will continue with the development of Tikuna. Our ongoing 

efforts will be focused on identifying additional attacks, minimizing false positives, 

detecting real-world incidents, and incorporating different Ethereum clients. Finally, 

we will explore using our approach in other P2P networks based on the same 

technology and libraries used by Ethereum, like Filecoin and IPFS. 
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